Accord.NET provides statistical analysis, machine learning, image processing, and computer vision methods for .NET applications. The Accord.NET Framework extends the popular AForge.NET with new features, adding to a more complete environment for scientific computing in .NET.

Armadillo is a C++ linear algebra library (matrix maths) aiming towards a good balance between speed and ease of use. The API is deliberately similar to Matlab's. Integer, floating point, and complex numbers are supported, as well as a subset of trigonometric and statistics functions. Various matrix decompositions are provided through optional integration with LAPACK and ATLAS numerics libraries. A delayed evaluation approach, based on template meta-programming, is used (during compile time) to combine several operations into one and reduce or eliminate the need for temporaries.

Fuzzy machine learning framework is a library and a GUI front-end for machine learning using intuitionistic fuzzy data. The approach is based on the intuitionistic fuzzy sets and the possibility theory. Further characteristics are fuzzy features and classes; numeric, enumeration features and features based on linguistic variables; user-defined features; derived and evaluated features; classifiers as features for building hierarchical systems; automatic refinement in case of dependent features; incremental learning; fuzzy control language support; object-oriented software design with extensible objects and automatic garbage collection; generic data base support through ODBC; text I/O and HTML output; an advanced graphical user interface based on GTK+; and examples of use.

K-tree provides a scalable approach to clustering by combining the B+-tree and k-means algorithms. Clustering can be used to solve problems in signal processing, machine learning, and other contexts. It has recently been used to solve document clustering problems on the Wikipedia collection.

MLPACK is a C++ machine learning library with an emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and maximum flexibility for expert users. It contains algorithms such as k-means, Gaussian mixture models, hidden Markov models, density estimation trees, kernel PCA, locality-sensitive hashing, sparse coding, linear regression and least-angle regression.

Milk is a machine learning toolkit in Python. Its focus is on supervised classification with several classifiers available: SVMs (based on libsvm), k-NN, random forests, and decision trees. It also performs feature selection. These classifiers can be combined in many ways to form different classification systems. For unsupervised learning, milk supports k-means clustering and affinity propagation.

MyMediaLite is a lightweight, multi-purpose library of recommender system algorithms. It addresses the two most common scenarios in collaborative filtering: rating prediction (e.g. on a scale of 1 to 5 stars), and item prediction from implicit feedback (e.g. from clicks or purchase actions). It contains dozens of recommender engines, including state-of-the-art matrix factorization methods. It also supports real-time updates to the recommender engines, storing engines to disk and reloading them again, and several evaluation measures to compare the accuracy of different recommender system methods. Three command-line programs that offer most of the functionality contained in the library are included.

OpenCog is an Open Source software project aimed at directly confronting the AGI challenge, based on mathematics and using biologically inspired algorithms, including algorithms for common-sense reasoning and machine learning. Components include natural language processing and speech generation, robotics, game control, and vision.